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ABSTRACT 

Energy considerations are introduced into the analysis of discrete, linear 

structural systems subjected to nonconservative (circulatory) forces. Various 

formulations of energy balance permit to establish stability criteria and to 

acquire further insight into several features associated with the stability of 

nonconservative systems, e.g. the destabilizing effect of damping and gyro- 

scopic forces. A simple example is used to illustrate the general considerations. 
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1. Introduction 

The investigation of stability of equilibrium of a linear mechanical 

system with a finite number of degrees of freedom under the action of a set 

of nonconservative forces has received considerable attention in recent years. 

In such systems the applied forces are said to be nonconservative in the sense 

that they do not possess a potential and they are assumed to be linear func- 

tions of the generalized coordinates. In addition, forces may be present in 

the system which are dependent on the generalized velocities and, therefore, 

may likewise be not derivable from a potential. The term "nonconservative" 

shall be reserved for coordinate-dependent forces which lack a potential 

(circulatory forces), while velocity-dependent forces will be designated as 

dissipative (or damping) and gyroscopic forces. 

Ziegler, in two memoirs [l, 21: has discussed various concepts of elastic 

stability and presented a comprehensive classification of systems and methods 

of analysis. In these studies Ziegler has shown, in particular, tnac aicnough 

the usual equilibrium and energy methods yield conditions for the stability 

of a conservative system, these methods, in general, are inadequate for the 

study of a nonconservative system. Therefore, the dynamic method (or vib- 

ration method) must be employed for the analysis of the stability of such 

systems. It is for this reason that the problem of stability of equilibrium 

of nonconservative systems may be said to constitute a special branch of the 

broader area of problems concerned with dynamic stability of structures. 

More recently, several investigators [3, 4, 5, 6 ,  7, 8 ,  9, 10, 111 have 

studied various nonconservative systems using the vibration method. For 

* 
The numbers in brackets refer to the references listed at the end of the 

paper. 
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example in C3I a system with two degrees of freedom was employed to show that, 

when nonconservative forces are present, multiple regions of stability and in- 

stability may occur. 

lose stability either by divergence (an adjacent equilibrium configuration 

exists), or by flutter (dynamic instability; oscillations with increasing am- 

plitude). 

gence can be obtained by employing either the static (equilibrium) or the 

dynamic method. 

It was also indicated that a nonconservative system may 

Further, from C3I one may conclude that the conditions for diver- 

It may be readily recognized that the usual energy method (or "work 

method" L21) becomes inapplicable in alalyzing the stability of equilibrium 

of a nonconservative system, regardless of whether stability is lost by di- 

vergence or by flutter. Since, however, energy considerations in conserva- 

tive systems supply powerful tools for the study of stability, it appears to 

be desirable to carry them over to the analysis of nonconservative systems. 

i n  fact,  it is samewhat surprisizg tn ohse+ve that, to the authors' knowledge, 

only a single study was found which contained energy considerations. In 

investigating the dynamics of articulated pipes conveying f l x ~ i d ,  T. B, BeD- 

jamin [12] invoked Hamilton's princ iple and discussed the energy tyansfer to 

the system. 

It is the purpose of the present contrtbution to propose an extension 

to the usual energy method, such as to make it applicable for the stability 

analysis of nonconservative systems with and without velocity-dependent 

forces. 

value of energy considerations, at least for linear systems, is different in 

conservative and nonconservative systems. Energy methods, as applied to 

conservative systems, supply approximate values of critical loads, whereas 

In attempting to accomplish this extension it was found that the 
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the main value of energy considerations in nonconservative systems, to which 

this paper is devoted, consists in supplying further insight into certain 

features of behavior typical of such systems. It may be possible, however, 

to make energy considerations form the foundation of approximate methods of 

analysis both in linear and nonlinear nonconservative systems. 

sibilities will be discussed elsewhere. 

These pos- 
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2. Conservative Systems 

We consider a holonomic, autonomous, linear system with r degrees of 

freedom, described by generalized normal coordinates q ; n = 1,2, ..., r. We 

assume that q = 0 define an equilibrium state and investigate its nature in 

the presence of a set of conservative generalized forces (stability problem). 

These forces are taken in the form 

n 

n 

m,n = 1,2,...,r, (1 1 

where the summation convention is implied and will be employed in the sequel. 

The parameter F ,  (0 C F < m ) ,  is the loading factor, and C 

metric matrix. 

[Cm] is a sym- 

For small motions of the system in the vicinity of its equilibrium po- 

n 2 n n ’  
l sition q 

and the potential energy associated with the restoring forces m y  be written 

= fin = 0 and at any time t, the kinetic energy is T = - 4 4 

as V = T An qn 2, where A are the natural frequencies of the load-free n 

system (F=O) in the absence of any damping forces. 

refer to V as the internal energy of the system.) The work of the conser- 

vative forces, Re, may be written as 

(In the sequel we shall 

We now wish to study this stability problem by applying the energy 

method which, as was shown by Pearson [13], is equivalent to the equilib- 

rium method. 

In formulating the energy method one states that the configuration 

= 0 is stable if the internal energy of the system, V, is larger than qn 

the work done by the conservative forces, We, for any static deviation of 
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the system from the equilibrium configuration. This, of course, leads to the 

requirement that the total potential energy of the system 
- v = v - w c  

be a minimum at the configuration q 

critical value of the load parameter. Thus it is seen that F is the smallest 

value of F for which v is no longer positive definite. 
2 obtained if we set det lk 

minant of the matrix [ 

= 0 for F < Fcr , where Fcr is the n 

cr 
This critical value is 

- F C 1 = 0, where detl 1 denotes the deter- n cr .nm 

1. 
We consider now the presence of linear viscous damping forces of the 

form vGm4 , where G 1 is a symmetric non-negative matrix and v is 

a magnitude parameter. Then for F = F the state q = 0 defines neutral 

equilibrium. 

[G nm 

cr n 



6 

3. Nonconservative Systems 

We now turn our attention to the case when in addition to the conserva- 

C tive forces Q 

(i.e. forces which are not derivable from a potential) of the form 

the system is subjected to a set of nonconservative forces n ’  

m,n = 1,2 ,..., r. 

Here the parameter CY, (-a< Q < m),  may be designated as the degree of non- 

conservativeness of these forces, and 

corresponding to the forces which are not derivable from a potential. 

generalized forces now are 

E [E 1 i s  a nonsymmetric matrix nm 

The 

m,n = 1,2, ..., r. (4 1 

The work of the applied forces is no longer given by equation (2) but 

iostead by 

w = uc + WN = - F c q 4, + FU J cm%andt; 
2 n m n  

m,n = 1,2, ..., r, (5) 

which depends not only on the final configuration of the system, but also 

on the path followed between the state q 

Therefore, the usual energy method as described in the previous section is 

no longer applicable and one must explore the possibility of its extension. 

= Qn = 0 and the state at time t. n 

As has been pointed out by several authors [ 3 , 4 , 6 , 7 , 8 ] ,  a nonconser- 

vative system may lose stability by either divergent-type motion, or by 

flutter. In the case of divergence, it seems possible to make the static 

energy method applicable in the presence of nonconservative forces by means 

of a slight modification. 
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Let us assume that the system loses stability by divergence. In this 

the system admits a nontrivial equilibrium Fcrl., case, by definition, for F = 

configuration, say qn = An; n = 1,2,...,r. 

from this configuration specified by 6% = 6A 

the first order of approximation in 6A 

is 6U = 

equilibrium, 

Bow we.consider small deviations 

In these deviations and to . n 

the work of the generalized forces n’ 

(C + aC )A 6~~ ; m,n = 1,2,.. . ,r. Therefore, for neutral nm n m m  

must be equal to the change of the internal energy of 

A 6A . But all 6A are arbitrary constants and we n n n  n the system 6V = 

have 

as the criterion for divergence. 

We note here that the above argument ,s essentially the same as the 

well-known virtual work method which is equivalent to the usual equilibrium 

apprcach to the stability analysis. 

In the case of flutter, however, the system loses stability by per- 

fQuming amplified oscillations. In this case one must use the dynamic 

method [1,2] for stability analysis. 

sequel, it is possible to formulate a single criterion which covers both 

cases, for the case of loss of stability by flutter a more restricted cri- 

terion will be suggested, which is better suited for application in spe- 

cific problems. 

Even though, as will be shown in the 
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4. Stability Criterion 

To study the stability of a linear, nonconservative system, we consider 

the following energy functional E, representing the total energy at time t 

E = T + V  - Wc - # + D. (7) 

Here T is the kinetic energy, V the potential energy of the restoring forces 

(internal energy), Wc + # the work of the ganera.M.zed f o - t c e s ,  a d  Fp the 

energy dissipated by damping in the system; e.i. 

For the equilibrium position, q, = 4, = 0 ,  to be stable the functional 

E must be positive-definite for all admissible paths in the 2r-dimensional 

= 0 to a state at time t. n - Qri phase-space, connecting the origin q 

This requirement is in accord with Lfapunov' s stability theorem h4]. 

It is, in fact, an extension of the usual stability requirement in energy 

terms, as discussed in Section 2 f o i  ;r;zser~atPve systems. This may be 

easily seen if we let Q = 0, (#= 0), and consider only paths which are 

normal to all Q, coordinate axes in .-h phase-space. 

becomes identical to 7 introduced in Section 2. 
The functional E then 

If the loss of stability occurs by flutter, however, the above sta- 

bility requirement yields a new criterion whfch cannot be deduced b9 sta- 

tic considerations. Let us assume that B - U is a posttive-de€in.t:e c 

quantity. 

obviously be positive definite if D - I? is positive definite for all ad- 

Then, as T is always a posLtPvs defintte functional, E will 

missible paths in the 2r-dimensional phase-space. Therefore, we haqe the 

following sufficiency theorem for stability with respect to flunfter. 
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In order that the equilibrium position q = Qn = 0 be stable with respect n 
to flutter, it ' t s  sufficient that D - @ be a positive-definite functional 
for all admissible paths in the 2r-dimensional phase-space. 

Although the above sufficiency condition for stability is quite rigorous, 

it is not suited for application to specific problems. Therefore, we would 

like to suggest a heuristic stability criterion which may be inferred from 

the above statement of sufficiency. 

Let us assume that the loss of stability occurs by flutter-type mOtion. 

In this case, by definition, beyond the Ehreshold of stability, the system 

performs oscillations with increasing amplitudes. Then, along the real 

path in phase-space, we have, by virtue of coneervation of energy, 

- L 

AE = A(T+V-Wc) + [uGm4- Fa Cm%] 4ndt = 0 ,  

where A denotes the change of (T+V-Wc) from t 

Therefore, the conservative part oi AE, AEC = u\* * ~ ~ ~ ~ 7 - V C > ,  8 .  increases if 

to t2 . 1 

t2 

=1 

is negative, and decreases if 5 - $ is positive. At the threshold of 

stability, the system performs steady-state oscillations at a fixed fre- 

quency 0). Then, by setting t = 0 ,  and t2 = - 2n , this threshold may be 1 (D 

defined by the equation 

which establishes the flutter criterion. 

Let us note, in this connection, a most remarkable feature of damping 

forces ~15,16,17,18,19,20]. They not only provide for energy dissipation 

and are thus associated with an energy sink, but also, by virtue of infln- 

encing the phase difference among the various degrees of freedom, control 
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the magnitude of the work done by the nonconservative forces 9". This latter 

property is associated with the velocity-dependence of the damping forces. 

Indeed, it can be shown that in the case of gyroscopic forces this property 

is, in general, retained, whereas, by definition of these forces, no energy 

is dissipated. To use a somewhat different description, we may say that 

velocity-dependent forces may or may not dissipate energy, but that in a 

nonconservative system such forces, in general, control the width of the 

channel through which the nonconservative forces 9," can do work on the 
system. 

By contrast to the above case, i t  can be shown that, when no velocity- 

dependent forces exist in the system, the work of the nonconservative for- 

ces averages to zero, through each cycle of oscillations, for all values 

of the load parameter smaller than a certain critical value, Fcr . 
this case, the system has r distinct modes of oscillation which may be 

excited independently by suitable initial distuzbances. 

In 

On the other hand, for F > F , ? is, in general, not equal to zero 
and the conservative energy of the system increases after each cycle. The 

system may, however, possess at most r-2 distinct modes of oscillation 

which may be excited independently by suitable initial disturbances. But 

for all other initial perturbations, the motion of the system becomes do- 

minated by an oscillatory motion with increasing amplitudes and at a single 

frequency u) . We can conclude that, when velocity-dependent forces are 
not present, the system may be placed into steady-state motion by certain 

specific initial perturbations for F > F . For all other initial per- 

turbations, however, it becomes unstable by oscillations with increasing 

amplitudes. 

cr . 

C 

cr . 

That is, energy is supplied to the system by the work of 



11 

nonconservative forces and the conservative part of the energy of the system 

increases without bounds as t OD . 
It may be of interest to note again that the existence of gyroscopic 

forces, which are associated with a skew-symmetric matrix B E [e 1, nm 

fl = 0, provides only the channel for the transfer of energy Bmn ’ nn 
and, therefore, renders the system unstable for all F > 0 .  This was first 

noted in [21] for systems with two and three degrees of freedom. 

can easily recognize this property in the light of the energy considerations 

for systems with r degrees of freedom. 

B = [em], and obtain 5 = 0 .  

existence of phase differences among the various degrees of freedom which 

is the required condition for nonconservative forces to do work on the 

system for all F > 0 .  

Here we 

We replace the matrix G E [ G  1 by 
The term ?, however, is not zero due to the 

nm 

We now consider the case when v is sufficiently small so that terms 
7 

associated with v- may be negiected ii; c~xzparisnr! w i t h  those of O(V).  It 

then can be 

The flutter 

- N  easily shown that ? is proportional to v; e.i. = VW1 . 
criterion then becomes 

2TT 

5 - P  

which is independent of the magnitude of the damping and is highly influ- 

enced by the relative values of the damping coefficients Grim . 
Although we focussed our attention on the stability analysis of dis- 

crete, linear nonconservative systems, all our results can be extended to 

continuous systems as was done by the present authors in [22]. Moreover, 

the method may also be employed for an approximate flutter analysis of non 

linear, discrete and continuous systems. 
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A detailed discussion of nonlinear flutter analysis will be presented 

elsewhere. We conclude this study by considering in the following section 

a simple example which illustrates most of the results obtained in this 

sect ion. 
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5. Example 

We consider a system with two degrees of freedom subjected to a follower 

force P, as is sketched in Fig. 1. This system was studied in detail by se- 

veral authors [15,lB,lY]. 

'p2 , and the joints A and B are assumed to be viscoelastic such that the 
restoring moments are c(p + b - 
spectively. With the other parameters of the system defined in Fig. 1, the 

The generalized coordinates are taken to be q1 and 

dql 
1 1 4% : I  - 

equations of motion are 

3ml$$+ ml ZI cp2+ (bl+ b2)cbl- b2p2+ (2c - Pl)(p,,+ (Pi- c)v2 = 0 

m,C2e1+ d 2 g 2 -  b2G1+ b2f$2- cql+ cap2 = 0, 

where dots denote differentiation with respect to time t. 

We assume a solution in the form 

and obtain from (a) 

2 2  2 2  m l w  m l w - c  

(d t~ - C) +W b, 
2 = z + iz = [ l -2  2 (  I2 r i 

L 

where iw is the purely imaginary root 

B + B2 1 

B1+6B2 ' 

k = 1,2. 

pk = zkeiWt; zl = 1, z2= z = z + ia r i s  

of the frequency equation, that is 

The work of the nonconservative components of the generalized forces, 

2Tr 
during the interval from t = 0 to t-= QD ¶ is 

2- 
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Similarly, the energy dissipated in the system during this same interval may 

be written as 

2 where 1 z 1 = zr2 + z . Setting 5 - 3 = 0 we obtain: for B1, B2 > 0 ,  i 
2 2 

2 (B1+ B2) (B1+ 6B2) 

4B1 + 33B1B2+ 4B2 
F =  + B1B2 , (e 1 

. where F = 7 From this equation we observe that, for B1 and B finite, 2 
F increases as damping increases. That is, F can be made as large as we 

please by selecting B and B2 large enough. 1 

We now consider the case of small damping; namely, we neglect second 

order terms in B and B and obtain 1 2 

2 
2 

n + 1  
0 - 1  

z = - -  
r 

3 2n B, 

2 2 - (n2+ 1)2 1 1 = (2,) - 
(n2- 1)2 

"hen by setting 5 - = 0 ,  we finally get 

* 
The same result can be obtained using Bouth-Hurwitz criteria. See 

E161. 
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where g = 

Fd = 

which can 

. For B # 0 ,  (Q # l), steady state motion is possible only if - B1 
2 B2 

also be obtained from (e) by neglecting B1B2. 

Equation (g) exhibits all properties of the system. It distinctly 

points out the effect of the ratio of damping coefficients on the critical 

load, the effect of vanishing damping, the degenerate case of Q = 1; 

(B2 = 0 ,  B 

small but fixed, the dissipation of energy by damping is greater than the 

input of energy as long as F <Fd . 
tically stable. 

'max 

(B1 = B2 = 0). 

For B 

# 0),  and finally the limiting case of no damping. For B2 1 

The system, therefore, is asympto- 

The m a x i m  value of F is obtained for 8 = 11.07 and is 

= 2.086 which coincides with the critical load of the undamped system 

= 0 and Bl # 0, n = 1 and equation ( g )  has a factor 0/0 which 

This is precisely the degenerate case when one of 
2 

yields no information. 

the equations of motion becomes uncoupled. 

values of B1 . 
In this case F = 2 for all 

However, when B = 0 but B2 # 0 ,  we have 
1 

1 
3 which yields F = - independently of the order of magnitude of B2 . 

note here that, as was proved in L1.81, for B1 = 0 ,  B2 # 0 ,  and B1 # 0, 

B2 = 0 ,  the determinant of the damping matrix becomes zero and the critical 

load& thvnndamped system establishes an upper bound for that of the damped 

Let us 

system for all values of non-zero damping coefficients. 
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In the case of vanishing damping both B and B approach zero and there- 1 2 
fore, for real, 5 and become identically equal to zero. In this case 

the critical value of F is obtained when -# ceases to be a bounded, positive- 
definite quantity, i.e. when a, becomes complex which gives F = 2.086. 

We now consider the effect of small gyroscopic forces. The equations 

of motion then are 

where 'pk = - dTk , T = t  ,js. From these equations and to the first 

order of approximation in B, we obtain the frequency equation as 
d7 

2 2Q4 - 0 (7 - 2F) - inBF + 1 = 0. 

We now assume n = X + iBp and substitute in the equation (i) to obtain 

4X2 = 7 - 2F f ,/ 4F2- 28F + 41 , 

which indicates that the system is unstable for all non-zero values of F. 
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